Transposed Poisson structures on Galilean and solvable Lie algebras
نویسندگان
چکیده
Transposed Poisson structures on complex Galilean type Lie algebras and superalgebras are described. It was proven that all principal do not have non-trivial $\frac{1}{2}$-derivations as it follows they admit transposed structures. Also, we proved each finite-dimensional solvable algebra admits a structure ${\rm Hom}$-Lie structure.
منابع مشابه
Novikov Structures on Solvable Lie Algebras
We study Novikov algebras and Novikov structures on finite-dimensional Lie algebras. We show that a Lie algebra admitting a Novikov structure must be solvable. Conversely we present an example of a nilpotent 2-step solvable Lie algebra without any Novikov structure. We construct Novikov structures on certain Lie algebras via classical r-matrices and via extensions. In the latter case we lift No...
متن کاملAbelian Complex Structures on Solvable Lie Algebras
We obtain a characterization of the Lie algebras admitting abelian complex structures in terms of certain affine Lie algebras aff(A), where A is a commutative algebra.
متن کاملClassification of Solvable Lie Algebras
Several classifications of solvable Lie algebras of small dimension are known. Up to dimension 6 over a real field they were classified by G. M. Mubarakzjanov [Mubarakzjanov 63a, Mubarakzjanov 63b], and up to dimension 4 over any perfect field by J. Patera and H. Zassenhaus [Patera and Zassenhaus 90]. In this paper we explore the possibility of using the computer to obtain a classification of s...
متن کاملPoisson Structures on Lie Algebroids
In this paper the properties of Lie algebroids with Poisson structures are investigated. We generalize some results of Fernandes [1] regarding linear contravariant connections on Poisson manifolds at the level of Lie algebroids. In the last part, the notions of complete and horizontal lifts on the prolongation of Lie algebroid are studied and their compatibility conditions are pointed out.
متن کاملSolvable Lie algebras with $N(R_n,m,r)$ nilradical
In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2023
ISSN: ['1879-1662', '0393-0440']
DOI: https://doi.org/10.1016/j.geomphys.2023.104781